
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

1

P-HIP: A Lightweight and Privacy-Aware Host
Identity Protocol for Internet of Things

Mahmud Hossain and Ragib Hasan

Abstract— The Host Identity Protocol (HIP) has emerged as the most suitable solution to uniquely identify smart devices in the mobile
and distributed Internet of Things (IoT) systems, such as smart cities, homes, cars, and healthcare. The HIP provides authentication
methods that enable secure communications between HIP peers. However, the authentication methods provided by the HIP cannot be
adopted by the IoT devices with limited processing power because of the computation-intensive cryptographic operations involved in hash
generation, signature validation, and session key establishment. Moreover, IoT devices cannot utilize the HIP as is to communicate
securely in the low power and lossy networks as there is a considerable communication overhead, such as packet fragmentation and
reassembly, for exchanging certificates over a lossy link. Additionally, the use of static host identifiers makes IoT devices vulnerable to
cyber espionage and user-targeted attacks. In this article, we propose an authentication scheme, P-HIP, that protects the identity privacy
of an IoT device by enabling the device to compute and use unique host identifiers from networks to networks and sessions to sessions.
To make the HIP suitable for resource-constrained IoT devices, P-HIP provides methods that unburden IoT devices from
computation-intensive operations, such as modular exponentiation, involved in authentication and session-key exchange. Additionally,
P-HIP minimizes the communication overheads for exchanging certificates in lossy networks. We implement a prototype of P-HIP on
Contiki enabled IoT that shows P-HIP can reduce computation costs, communication overheads, and the session-key establishment time
when used by low-powered devices in a lossy network.

Index Terms—Security, Privacy, Host Identity, Authentication, and Internet of Things

F

1 INTRODUCTION

The Internet of Things (IoT) based systems are becoming ubiqui-
tous in a wide range of application domains, such as smart city
[1, 2], intelligent healthcare service [3, 4], connected vehicles [5, 6],
and smart wearables [7], due to the recent advances in wireless
communications and pervasive computing. An IoT system can
have two types of smart device: mobile device (e.g., wearables and
automobiles) and stationary device (e.g., smart home appliances).
A user of a smart device can communicate to the device from
anywhere at anytime regardless of the type (mobile or stationary)
of the device. The user can control an IoT device remotely through
Cloud services. The user can also interact with the IoT device
locally being co-located with the device in the same network.

According to Gartner, approximately 5.8 billion IoT devices
will be in use worldwide by 2020 [8]. Therefore, IoT devices
require a global identification and naming scheme even more
than the legacy Internet nodes. In the current Internet architecture,
Internet Protocol (IP) addresses are used to identify a host and
its location. As a result, it becomes challenging to locate IoT
devices that travel from one network to another network using
their IP addresses. Moreover, a client that sends data to an IoT
device is only interested in the identity of the recipients, while
the routing components in the source and intermediary nodes are
only concerned with the recipient’s location. Additionally, the
confidentiality of the communications that take place between
IoT devices needs to be protected as these devices can exchange
sensitive information, such as patients’ health records. The identity

• Mahmud Hossain (mahmud@uab.edu) and Ragib Hasan (ragib@uab.edu),
SECuRE and Trustworthy computing Lab (SECRETLab), Department of
Computer Science, University of Alabama at Birmingham, Alabama 35294,
U.S.A.

privacy of these devices also need to be ensured as these devices
can be the target of identity spoofing, location recording, and
communication tracking attacks.

There are some research work [9–11] that proposes methods
to identify devices in mobile environments. The Mobile IP [9, 10]
proposes the use of two IP address for a mobile device: one IP
address is used as a locator, such as routing or forwarding messages,
and the other IP address is used as the identity of the device. The
Named Data Networking protocol (NDN) [11] eliminates the use
of IP addresses and uses content information, such as universal
resource identifiers (URIs), to locate and identify hosts and to
route requests on the Internet. However, further research is required
to validate the applicability of URI based addressing and routing
in the Low-powered Wireless Personal Area Networks [12, 13],
where IoT devices use the IPv6 for addressing and the RPL [14] for
routing. Although Mobile IP and NDN provide methods to identify
hosts in mobile environments, they do not consider security and
identity privacy in their designs; instead these methods rely on the
application layer protocols for the communication security.

The Host Identity Protocol (HIP) [15–20] can a suitable solution
for IoT devices considering the security and privacy requirements of
stationary and mobile IoT systems. The HIP can uniquely identify
devices both in the mobile and stationary IoT environments and
can be utilized to ensure identity and communication security. The
HIP eliminates the dual role, such as identifier and locator, of an IP
address. In the HIP, host identifiers are used to identify IoT devices,
while IP addresses are used to locate these devices. An IoT device
is issued a public key. The device uses its public key and a 128 bit
hash of the public key (Host Identity Tag) its host identifier. An
HIP host identifies its peer by using the Host Identity Tag (HIT) of
the peer.

After identification, an IoT device requires to authenticate
the peer before exchanging information. Moreover, the com-

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

2

munications need be encrypted to protect the confidentiality
of the exchanged messages. In this regard, the HIP provides
methods for mutual authentication and key exchange. However,
the authentication and key exchange methods involve computation
intensive cryptographic operations, such as asymmetric encryption
and decryption, signature generation and verification, and modular
exportation operations. These operations are too heavy to be
executed by the resource-constrained IoT devices with limited
processing power and memory. It can be noted from Table 1, IoT
devices [21–25] have a few megabytes of memory (8 KB to 32 KB
of RAM and 48 KB to 512 KB of ROM) and low powered CPUs
(8 MZ to 96 MZ clocks).

The HIP peers exchange X.509 certificates [26] to prove that
a trusted party issued the host identifiers (public keys and HITs).
However, the size of the certificates is considerably larger than
the Maximum Transmission Unit (MTU) of the IEEE 802.15.4
link [12] that IoT devices use for communications. IoT devices
operate on lossy networks, such as 6LowPAN [13], Controlled Area
Network (CAN) [27], KNX [28], Z-Wave [29], and Zigbee [30].
These networks have limited bandwidth with a data rate ranging
from 16 kbps to 250 kbps. The certificates are sent in multiple
fragments over the lossy links. As a result, there are notable
communication and energy overheads for fragment processing and
packet delivery both on the sender and receiver IoT devices. The
communication overheads limit an IoT device to respond to real-
time requests and the energy overheads shorten the device’s battery
life.

Although the HIP ensures secure communications, such as
authentication, integrity, and encryption, between IoT devices,
it does not address the privacy issues of using the same host
identifiers over and over again for authentication. An IoT device’s
host identifiers are static. A mobile IoT node uses the same public
key and HIT to authenticate to its peers when it moves from one
network to another network. Adversaries can track the locations
of a mobile IoT device or the owner of the device by learning
its public key and HIT. Later, this location information can be
used to profile the movements of the device owner. The location
information can also be used for cyber espionage. Therefore, the
HIP is vulnerable to user-targeted attacks.

In this article, we propose P-HIP, a privacy-aware and
lightweight authentication method for the HIP. P-HIP enables
IoT devices to compute a unique public key and HIT every time it
communicates to its peer or moves from one network to another
network. Thus, P-HIP allows mobile devices to avoid using a static
host identifier. The use of a unique identifier for protects an IoT
device from the location recording and identity tracking attacks.
We also propose an authentication scheme based on the Elliptic
Curve Qu-Vanstone (ECQV) [34] cryptography that unburdens
resource-limited devices from the computation overheads for
the certificate verification, such hash computation and signature
validation. Moreover, P-HIP eliminates the modular exponentiation
operations involved in the asymmetric encryption and decryption
and session key derivation. Unlike X.509 certificates, the ECQV-
based credentials, such as public key and public key validation data,
fit in an IEEE 802.15.4 frame and can be sent in a single fragment.
Hence, P-HIP reduces communication overheads and energy costs
for packet fragmentation, fragment delivery, and reassembly.

Contributions: The contributions of this article are as follows:

1) We propose a host identity computation scheme that enables
devices to compute network or session specific host identifiers

Responder

I1: HITi, HITr

Initiator

Validate Certi

Verify signature

Compute K

Verify MACK(Ni)

Validate Certr

Verify signature

Compute K

Verify

MACK(Nr)

R1: HITi, HITr, Puzzle, Certr,

KMr, Sign(R1)SKr

I2: HITi, HITr, Certi, Solution,

KMi, Ni, MACK(NI), Sign(I2)SKi

R2: HITi, HITr, Nr, MACK(Nr)

Fig. 1: HIP handshakes for authentication and key exchange.

without communicating to a certificate authority. The network
and session specific identifiers protect the location and identity
privacy of an IoT devices and the owner of the device.

2) We present a lightweight authentication scheme that does not
require IoT devices to perform hash and signature operations
to validate host identifiers. Hence, the authentication method
reduces computation overheads and enables devices to perform
mutual authentication faster.

3) We provide a security analysis of P-HIP which shows that P-
HIP is secure against various network attacks, such as spoofing
and replay.

4) We implement a proof-of-concept of P-HIP and provide a
performance analysis which demonstrates that P-HIP reduces
communication, computation, and energy costs for authentica-
tion and key exchange.

Organization: The rest of this article is organized as follows.
We present a background on the HIP authentication process, IoT
networking, and Elliptic Curve Cryptography (ECC) in Section 2.
We provide the related work in Section 3. The problem statement
and motivation are provided in Section 4. Section 5 provides the
details of the operational model of P-HIP. A security analysis
of P-HIP is presented in Section 6. We present the experimental
results in Section 7. Finally, we conclude this article in Section 8.

2 BACKGROUND

2.1 HIP Authentication Process

In this section, we provide an overview of the authentication process
of the HIP. In the HIP, communicating peers utilize the public key
cryptography for authentication and the peers are identified by
their Host Identity Tags (HITs). A host’s HIT is computed from its
public key. A HIT is a 128 bits hash of a public key. Figure 1 shows
the HIP handshakes to establish a secure association between two
HIP peers.

An Initiator sends an I1 message to a Responder. The I1
message contains the HITs of the textcolorblackInitiator (HITi)
and Responder (HITr). The Responder receives the I1 message and
then creates an R1 message that contains HITi, HITr, a puzzle, and
its own certificate Certr. The puzzle protects the Responder from a
Denial of Service (DoS) attack. The Responder’s keying material
(KMr) to establish a session is also included in the R1 message.
The Responder signs the R1 message using the private key SKr
of its key pair (SKr,PKr). The PKr is the Responder’s public key.
The Initiator receives the R1 message and validates the Certr to
ensure that the PKr included in the Certr is issued by a trusted
party. Next, the Initiator verifies the signature included in the R1
message by using the PKr and authenticates the Responder. The

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

3

TABLE 1: Specifications of some representative devices used for IoT applications.

Device Specification CPU Storage Networking

Arch (Bits) Clock (MHz) RAM (KB) ROM (KB) Standard Radio Interface Bandwidth
(kbps)

Sky-Mote [22] 16 8 10 48 6LoWPAN IEEE 802.15.4 250
Z1-Mote [21] 32 32 32 512 6LoWPAN IEEE 802.15.4 250
Openmote [24] 32 32 32 512 6LoWPAN IEEE 802.15.4 250
Waspmote [25] 8 16 8 128 Zigbee IEEE 802.15.4 250
Arduino Uno [31] 8 16 2 32 6LoWPAN IEEE 802.15.4 250
Mbed [32] 32 96 32 512 CAN CAN Bus 320
Weptech [33] 32 32 32 512 6LoWPAN IEEE 802.15.4 250
KNX Stacks [28] 32 32 32 512 KNX KNX Radio 16.4

Initiator solves the puzzle and computes a session key (K) using its
own session keying material KMi and the Responder’s session
keying material KMr as K = KeyExchangeMethod(KMi,KMr).
The Initiator creates an I2 message that includes HITi, HITr, it own
certificate Certi, the solution of the puzzle, a signature computed
using it private key SKi of the key pair (SKi,PKi), and a message
authentication code for a nonce Ni computed using K as MACK(Ni).
The Initiator sends the I2 message to the Responder. The Responder
verifies the authenticity of the Certi, validates the signature using
the PKi included in the Certi, and authenticates the Initiator. Next,
the Responder computes the session key K using KMi and KMr,
and then validates the MACK(Ni). The Responder creates an R2
message that includes a MACK(Nr) for a nonce Nr. The Initiator
receives the R2 message and validates MACK(Nr). Hence, the
Initiator ensures that a secure session is created successfully. After
this point, the communications are encrypted using K.

2.2 Low Power and Lossy IoT Network

IoT devices operate on low-powered wireless personal area
networks (LoWPANs). The IEEE 802.15.4 [12] standard defines
the operation of LoWPANs. An IEEE 802.15.4 radio link has a
bandwidth of 250 Kbps. The MTU of an IEEE 802.15.4 link is
127 octets which is much lower than the MTU of an IPv6 packet
(1280 octets). Therefore, a full IPv6 packet does not fit in an IEEE
802.15.4 frame and requires to send in multiple fragments. The
6LoWPAN [13] protocol provides a method to send and receive
IPv6 packets (or packet fragments) over IEEE 802.15.4 based
networks.

In Figure 2, we present the details of an IEEE 802.15.4 frame.
We consider the User Datagram Protocol (UDP) as the transport
layer protocol to compute the size of the application payload for
an IEEE 802.15.4 frame because UDP has fewer communication
overheads than the Transmission Control Protocol (TCP). The size
of the UDP headers is smaller than the size of the TCP headers.
As a result, the number of IPv6 packet fragments are fewer in the
UDP communications than in the TCP communications. Moreover,
unlike TCP, UDP does not require communicating devices to
perform a three-way handshake to send a message. Therefore, in
lossy networks, a devices can exchange messages faster when UDP
is used instead of TCP.

As shown in Figure 2, starting from a maximum physical layer
packet size of 127 octets and the maximum header overheads of 98
octets, the resultant maximum frame size at the application layer
is 29 octets. Application payloads larger than 29 bytes are sent in
multiple fragments.

Two types of routing schemes are used to forward packet
fragments in an IoT network [14]: mesh-under and route-over. In
the mesh-under routing, a routing header (mesh-header) is added to

IEEE 802.15.4 Frame (127 B)

IEEE 802.15.4

Header

Compr.

Header

IPv6

Header
IPv6 Payload

25 B 40 B 8 B 51 B (min)

UDP

Header

IEEE 802.15.4

Header

Compr.

Header

IPv6

Header
IPv6 Payload

UDP

Header

Frag.

Header

IEEE 802.15.4

Header

Compr.

Header

IPv6

Header

IPv6

Payload

UDP

Header

Frag.

Header

Mesh

Header

25 B 2 - 3 B 8 B40 B4 - 5 B

40 B 8 B2- 3 B4 - 5 B5 -17 B

2 - 3 B

25 B

a. Header Compression

b. Fragmentation + Header Compression

c. Mesh Addressing + Fragmentation + Header Compression

29 B (min)

46 B (min)

Fig. 2: IEEE 802.15.4 Frame. min = Minimum.

every frame (Figure 2c). As such, application payloads larger than
29 bytes are fragmented. A forwarding node uses the mesh-header
to make a routing decision on a per-fragment basis.

In contrast, in the route-over routing, application payloads
larger than 46 bytes are fragmented (Figure 2b). The route-over
scheme makes forwarding decisions on a per-packet basis. Every
forwarding node reassembles the fragments of an IP packet to
make the routing decision. Next, the on-path node re-fragments
the packet and sends the fragments to the next hop based on the
information available in its small-sized routing table.

2.3 Combined Public Key
In the combined public key (CPK), a new public key is computed
with the addition of two or more public keys. The computation
of a CPK relies on the Elliptic Curve Cryptography (ECC). Let
G = (Gx,Gy) is a base point on the elliptic curve and n is a prime
number and has order G. An ECC key pair is represented as (d,Q)
such that d is a private key and Q is a public key. The Q is a point
on the elliptic curve Q = (Qx,Qy). The d and Q are computed as
d ∈ [1,n−1] and Q = d ∗G.

In the Elliptic Curve Cryptography (ECC),
One characteristic of ECC key pair is that the combination of

private keys and corresponding public keys in ECC is still a pair of
elliptic curve keys, which we denote as CPK.

For example, d1 and d2 are private keys in an elliptic curve, and
their corresponding public keys are Q1 = d1 ∗G and Q2 = d2 ∗G
respectively. A new ECC key pair (dn,Qn) can be computed as
dn = d1+d2 and Qn =Q1+Q2. For completeness, we prove that Qn
corresponds to dn ∗G as follows: Qn = Q1+Q2 = d1 ∗G+d2 ∗G =
(d1+d2)∗G= dn ∗G. Therefore, the combination of ECC key pairs
generates a new key pair (or CPK).

2.4 ECQV Based Credentials
The ECQV based credentials, such as implicit certificates [34] ,
public keys, and public key validation data, are computed using the

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

4

Requester (U) Certificate Authority (CA)

1. ru ϵR [1,…, n-1]

2. Ru = ru*G
3. IDu, Ru

4. k ϵR [1,…, n-1]

5. Pu = Ru + k*G

6. ICertu = Encode (Pu, IDu,*)

7. e = Hash (Certu)

8. s = e*k + dCA (mod n)
9. s, ICertu

10. e = Hash (ICertu)

11. du = e*ru + s (mod n)

12. Qu = du*G

13. Store ICertu

14. Destroy s

Fig. 3: The process to issue an ECQV implicit certificate.

Elliptic Curve and Combined Key cryptography. The methods to
issue an implicit certificate and validate the certificate are described
below.

2.4.1 Implicit Certificate Issue Process

Figure 3 shows the process to issue an ECQV implicit certificate
(ICert). Step 1–3: A requester (U) computes an ephemeral ECC key
pair (ru,Ru) such that r ∈ [1,n−1] and Ru = r ∗G. The requester
provides its identity IDu and an ephemeral public key Ru to
a Certificate Authority (CA). Step 4–6: The CA computes an
ephemeral key pair (k,k ∗G) by selecting a random private key k,
and then computing a public key as k ∗G. The CA generates
a public key construction data Pu by applying CPK as Pu =
Ru+ k ∗G. Next, the CA encodes IDu and Pu in a certificate
as ICertu = Encode(Pu, IDu). The Pu is used as a proof that the
ICert is issued by the CA. A verifier uses the Pu to validate the
authenticity of the ICertu. Step 7–9: The CA computes a private
key construction data s using the private key dCA of its ECC key
pair (dCA,QCA). The CA provides s and ICertu to the requester.
Step 10–12: The requester computes a private key du using s and
ru as du = e∗ ru + s (mod n), and a public key Qu as Qu = du ∗G.

2.4.2 Implicit Certificate Validation Process

Figure 4 presents the method to validate the public key Qu. A
prover presents its ICertu and Qu to a verifier. The verifier validates
that Qu can be reconstructed by using the public key validation data
Pu and the public key QCA of the CA. The verifier parses ICertu
and retrieves Pu. The verifier generates a hash of the ICertu as
e = Hash(ICertu). Next, it computes a public key as e∗Pu +QCA.
If this operation results in Qu, then the verifier ensures that the Qu
is authentic.

Prover Verifier

1. Qu, ICertu

2. Retrieve PU from ICertu

3. e = Hash (ICertu)

4. Qt
u = e*Pu + QCA

5. Qt
u == Qu ? Authentic : Forged

Fig. 4: The process to verify an ECQV certificate.

For completeness of the public key validation method, we prove
that the public key Qu corresponds to du:

Qu = e∗Pu +QCA

= e(Ru + k ∗G)+dCA ∗G

= e∗ (ru ∗G+ k ∗G)+dCA ∗G

= e∗ ru ∗G+(e∗ k+dCA)∗G

= e∗ ru ∗G+ s∗G

= (e∗ ru + s)∗G

= du ∗G

3 RELATED WORKS

In this section, we survey HIP authentication methods and identity
their limitations.

3.1 HIP-Base exchange (HIP-BEX)
In the HIP-BEX [15], two HIP peers authenticate each other by
using the RSA cryptography. The HIP peers require to compute
and validate RSA signatures for authentication. The peers perform
Diffie-Hellman (DH) key exchange [35] to establish a session key.
The HIP-BEX cannot be adopted by the resource-constrained IoT
devices because of the modular exponentiation operations involved
in the RSA signature generation and verification process and in
the DH public and session key computations process. An RSA
signature is generated as s = md (mod n) such that s = signature,
m = message, n = prime, and d = private key, and verified as
m = se (mod n) such that e = public key. An Initiator computes
its DH public key A as A = ga. Similarly, a Responder computes
its DH public key B as B = gb. The terms a and b represent the
DH private keys of the Initiator and Responder respectively. The
Initiator and Responder compute a DH session key kdh as kdh = Ba

= gab and kdh = Ab = gab respectively. IoT devices [21–25] with
limited processing power (8 MHz to 48 MHz CPU without floating
point unit) cannot afford these modular exponentiation operations.

3.2 Distributed HIP (D-HIP)
The D-HIP [16] delegates the modular exponentiation (ga and
gab) involved in the DH public value computation (A = ga) and
session key derivation (kdh = gab) operations to the fewer resource-
constrained nodes (proxies) co-located with IoT devices using a
collaborative scheme. An Initiator selects a set of proxies and
delegates the key exchange operation to the proxy nodes. The
Initiator splits its secret exponent a into multiple blocks a1,a2, ...,an

with
n
∑
1

ai = a and sends these to the proxies. Each proxy receives a

unique block ai and computes its part of the Initiator’s public DH
key gai and sends it to a Responder. The Responder receives all the
parts from the proxies and computes the Initiator’s public DH key

as
n
∏
1

gai = g
n
∑
1

ai
= ga. The Responder sends its secret exponent b to

the proxies. Each proxy computes its part of the DH key gaib and
sends it to the Initiator. The Initiator computes the session key kdh

=
n
∏
1

gaib = g
n
∑
1

aib
= g

b
n
∑
1

ai
= gab.

The D-HIP assumes that only the Initiator device is resource-
constrained. Therefore, the D-HIP delegates the modular exponen-
tiation operations A = ga and kdh = gab performed by an Initiator
to the proxy nodes. However, in device-to-device communications,

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

5

a Responder can also be resource-constrained. Therefore, the Re-
sponder requires to delegate its modular exponentiation operations
to the proxies as well. As such, there can be a significant increase
in the time to establish a session key. Moreover, there can be a
considerable communication overheads for exchanging numerous
messages between the Initiator and proxies as well as between the
proxies and the Responder. Moreover, the proxy selection scheme
is vulnerable to DoS attacks. The D-HIP requires the initiator to
select proxy nodes and split and distribute keys between them if a
single proxy fails to generate its own part of the DH-key correctly.
A malicious proxy can exploit this property to perform a DoS
on the initiator node. For instance, a malicious proxy can keep
providing an incorrect DH key to the Initiator to force the initiator
to perform the proxy selection task over and over again.

3.3 HIP-Tiny Exchange (HIP-TEX)
The HIP-TEX [17] replaces the computation intensive DH key
exchange with a cooperative secret key exchange using the
public key cryptography. A Initiator and Responder encrypt the
cryptographic materials required to establish a session key using
their RSA public keys. In the HIP-TEX, nearby proxy nodes
participate in the key exchange scheme through a collaborative
scheme similar to the D-HIP. Although the HIP-TEX eliminates
the computation overheads for the DH key agreement, it introduces
the RSA encryption and decryption operations which are based
on the modular exponentiation operations: c = ENCRY PTrsa(m) =
me mod n; DECRY PTrsa(c) = cd mod n such that c = ciphertext
and m = message. The HIP-TEX has the same disadvantages as
the D-HIP, since both of these schemes rely on the distributed
collaborations of the proxy nodes. Similar to the D-HIP, the HIP-
TEX increases communication overheads and secret key setup time
and is vulnerable to DoS attacks.

3.4 HIP-Diet Exchange (HIP-DEX)
The HIP-DEX [18] adopts the ECC to avoid the computation
overheads for the DH key exchange. The HIP-DEX uses a long-
term Elliptic Curve Diffie-Hellman (ECDH) [36] public value
as a Host Identifier and the ECDH key exchange to establish a
session key. The ECDH key exchange eliminates the computation
cost for the two modular exponentiation operations: an ephemeral
DH public key generation cost (A = ga) and a DH session
key computation cost (kdh = gab). The ECC also eliminates the
computation intensive cryptographic primitives involved in the
RSA signature generation and verification operations. As a result,
the HIP-DEX sacrifices some of the security properties, such
as forward secrecy and the option for selecting cryptographic
suites. The HIP-DEX uses the Elliptic Curve Digital Signature
Algorithm (ECDSA) [37] to sign and validate a signature. The
ECDSA signature generation and verification operations require
the HIP hosts to perform inverse operations. Therefore, the ECDSA
signature is still too heavy to be supported by highly resource
constrained IoT devices, such as a TMote-Sky device with a CPU
speed of 8 MHz [22].

3.5 HIP Header Compression
The authors in [19] propose a compression layer (Slimfit) in the
protocol stack to reduce the size of the HIP headers. The Slimfit
layer is introduced between the HIP and network layer. The Slimfit
layer compresses the HIP headers of the outgoing packets before

sending them to the network layer. For the incoming packets,
the Slimfit layer decompresses their HIP headers, and then sends
them to the HIP layer. The Slimfit layer reduces the transmission
overheads for sending HIP headers. However, the computation costs
are increased due to the header compression and decompression
operations.

3.6 Lightweight HIP (LHIP)

The LHIP [20] does not consider the major security requirements to
obtain simplicity. The LHIP does not perform host authentication
and encryption; thus, it avoids cryptographic operations of signature
computation and validation. In the LHIP, communicating peers
do not perform the DH or ECDH key exchange; Therefore, the
communications between the hosts are not encrypted. The LHIP
achieves a minimal degree of security by authenticating succeeding
messages using hash chains and has a mechanism to detect session
hijacking.

4 PROBLEM STATEMENT AND MOTIVATION

4.1 Communication and Computation Overheads

The collaborative schemes [16, 17] are proposed to reduce the
computation cost for the session key establishment. However, these
schemes introduce communication overheads for proxy selection
and key distribution with the cost of reducing the computation
costs. The schemes increase the session key setup time as numerous
messages are need to be exchanged between between the proxies,
Initiator and Responder to derive a session key. Therefore, [16, 17]
are not suitable for IoT devices that need to respond to real-time
requests.

In [19], HIP headers are compressed to reduce the communica-
tion overheads for sending and receiving messages. However, there
is an increase in the energy consumption and runtime both on the
sender and receiver devices as every outgoing packet is compressed
by a sender and every incoming packet is decompressed by a
receiver.

None of the authentication schemes discussed in Section 3
provide solutions to minimize the computation overheads for
encryption, and signature generation and verification. The schemes
also do not consider the communication overheads for exchanging
certificates in the I1 and R1 messages. The I1 and R1 messages are
sent in numerous fragments since the size of a certificate is larger
than the maximum size of the application data frame (see Figure 2).
Additionally, the size of a certificate increases with an increase in
the length of a public key. The increase in the certificate length
results in an increase in the total number of message fragments.
Moreover, the time to deliver and process fragments and establish
a session key are increased because of the increase in the number
of fragments.

In Figure 5, we present a correlation between the size of a
certificate and the length of a public key. The certificates are self
signed and created using the OpenSSL library [38]. From Figure 5,
it can be noted that the increase in the key length increases the size
of a certificate. in Figure 6, we also provide a correlation between
the size of a certificate and the number of packet fragments. The
number of fragment increases with the increase in the certificate
size as shown in Figure 6. From the figure, it can also be observed
that the number of fragments is larger in the Mesh-under routing
(Figure 6a) than in the Route-over routing (Figure 6b). This is due
to the fact that the space for an application payload in the IEEE

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

6

1237

1590

1935

948 981
1050

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1024 2048 3072 112 160 256

RSA ECC

C
er

ti
fi

ca
te

 S
iz

e
(i

n
 B

y
te

s)

Key Lenght (in Bits)

Fig. 5: X.509 certificate size Vs. Public key length.

802.15.4 is reduced by 17 Bytes if Mesh-under routing is adopted –
the space for an application payload is 46 Bytes (Figure 2b) and
29 Bytes (Figure 2c) in the Mesh-under and Router-over routing
respectively. Additionally, the number of packet fragment increases
if the link-layer security (e.g., IPSec [39]) is used. In the link-layer
security, additional header fields are added to an IEEE 802.15.4
frame. As a result, the room for an application payload is reduced
and the number of fragments is increased.

27

35

43

21 22 23

30

38

47

23 24 25

0

5

10

15

20

25

30

35

40

45

50

1237 1590 1935 948 981 1050

RSA ECC

N
u

m
b

er
 o

f
F

ra
g

m
en

t

Certificate Size (in Bytes)

Link Layer Security Absent

Link Layer Security Present

(a) Certificate size Vs. Packet fragments (Route-over routing).

43

55

67

33 34
37

50

64

78

38 40 42

0

10

20

30

40

50

60

70

80

90

1237 1590 1935 948 981 1050

RSA ECC

N
u

m
b

er
 o

f
F

ra
g

m
en

t

Certificate Size (in Bytes)

Link Layer Security Absent

Link Layer Security Present

(b) Certificate size Vs. Packet fragments (Mesh-under routing).

Fig. 6: An analysis of packet fragments for X.509 certificates.

4.2 Threat Model

Mobile IoT devices can be a target of the location tracking attacks.
Similarly, stationary devices can a subject of local DOS attacks. In
this section, we provide some of the details of these types attacks.

4.2.1 Movement Profiling

An adversary can record the locations of mobile IoT devices
by tracking their static host identifier. These devices can range
from high-powered smart vehicles to low-powered wearable and
implementable (e.g., pacemakers devices) sensors. A movement
profiling attack can be performed as follows.

An adversary tracks the locations of a mobile IoT device, which
travels from one network to another network, being co-located with
the target device. Next, the location data of the device is used to
predict its future locations for a specific day. The adversary can use
the prospective location data to perform user-targeted attacks. The
adversary can also use the location data to spy on a target device or
the owner of the device, such as military personnel or government
officials [40, 41].

In Figure 7, we present a scenario for the location tracking
attack. Although we consider a connected car scenario to better
understand the movement profiling attack in the mobile IoT
systems, adversaries can perform such an attack on other mobile
IoT devices including wearable and implantable sensors.

Attacker

Target

RSU RSU

VANET1 VANET2

RSU

VANETN

Tanning

Prediction

[ID, Location,

Day, Time]

IDs, Day
Prospective

Locations

Fig. 7: Movement profiling in VANETs.

4.2.2 Communication Relation

Adversaries can perform various types of DoS attacks, such
as communication jamming, resource exhaustion, and service
disruption, in the LoWPANs. In this paper, we consider a type
of local DoS attack where a malicious IoT device can disrupt the
communications of the selective smart devices. The details of the
attack scenario are as follows.

The use of static identities enables adversaries to learn the
identities of communicating devices. An adversary can use this
knowledge to disrupt communications when a target devices start
exchanging messages with it peer. To better explain these types
of attacks, we consider a smart home where the IP camera of the
home is infected with a malware [42]. The compromised camera
can learn the identity of the IoT-enabled pacemaker, which is
implanted in the heart of the homeowner, when it presents its static
identity to a cloud medical service for authentication purposes. The
cloud service enables a physician to monitor the heart condition of
the owner remotely. The malware can configure the camera such
that it jams the communication channel between the pacemaker
and the cloud service when the camera finds that the pacemaker
is sending data to the cloud service. Hence, a malicious device
can block critical health information from being transmitted to
physicians, threatening the life of the patient. Adversaries can
come up with similar attack models [43] by exploiting IoT devices’
static identities. Figure 8 shows an overview of such an attack.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

7

Smart Appliances Wearable Sensors

2.2 Blocks Radio Channel

Compromised Device

2.1 Jamming

1.1 Sniff Identities 1.2 Sniff Identities

Fig. 8: Communication disruption attacks.

VANET1

Interaction

(V2, ID2)

Interaction Identification

VANETn
VANETn-1

Interaction
(V1, ID1)

(V3, ID3) (V2, ID2)

(V1, ID1)

(Vn, IDn)False Info on Vn

Fig. 9: An attack scenario for providing false information.

4.2.3 Falsifying Information

In the mobile ad-hoc networks, adversaries can provide false
information to a target device. The false information can limit
the device to make a right decision. For instance, in the VANETs,
a malicious smart car can learn the identities of its nearby vehicles.
Later, the malicious vehicle can provide a false information on the
speeds and lane positions of nearby vehicles to a target car after
recognizing the vehicle on the road by its static identifier. Such
fabricated information can lead to accidents which can jeopardize
the lives of the passengers (Figure 9).

5 PROPOSED SOLUTION: PRIVACY-AWARE HIP
(P-HIP)
In this section, first, we provide an overview of P-HIP. Next, we
present the details of our proposed authentication and key exchange
schemes.

We propose an authentication method based on the ECQV
cryptography that does not require HIP peers to exchange large-
sized certificates, such as X.509 certificates, as a proof of the
authenticity of the host identities (HITs and public keys). More-
over, the authentication method allows HIP hosts to verify the
authenticity and integrity of host identifiers without performing
signature and hash operations. Hence, resource-limited HIP hosts
are unburdened from communication and computation overheads.

In the proposed scheme, a Certificate Authority (CA) issues
ECQV credentials to HIP hosts. The hosts use the ECQV creden-
tials and ECC to compute their private (di) and public (Qi) keys
(see Section 5.1). During authentication, two communicating HIP
peers exchange their public keys and ECQV credentials. A peer
uses the public key of the CA and its counterpart’s ECQV cardinal
to validate the authenticity of the public key (see Section 5.2) and
ensure that the counterpart possesses the corresponding private key
(see Section 5.3).

After successful authentication, HIP peers use the ECDH key
exchange method to establish a session key to protect communica-
tions. We provide a solution that enables HIP peers to use ephemeral
public and private keys to compute the session without performing

signature, encryption, and decryption operations. Section 5.3,
provides the details of the computation of the session key.

To this end, we propose a scheme that enables an HIP host
to compute ephemeral and unique public and private keys from
sessions to sessions and networks to networks. An HIP host does
not require to communicate to the CA to receive ECQV credentials
to compute new public and private keys. The proposed scheme
allows an HIP host to use a previously issued CA credentials to
compute unique host identifiers (public and private keys). An HIP
peer can still validate the authenticity of the newly computed host
identifiers by using the CA’s public key (see Section 5.4). The use
of unique identifiers protects the session and location privacy of
the HIP hosts.

5.1 Host Identity Computation
A CA issues ECQV credentials to an HIP host (an IoT device)
which the host uses to compute its host identifiers. Device
manufactures or service providers can maintain their own CAs or
they can consider a well-known CA, such as VeriSign1, Digicert2,
and GoDaddy3, as the Root CA. If a CA is managed by a device
manufacturer or service provider then it has to be an Intermediate
CA. A well-known Root CA issues the certificate of an Intermediate
CAs and the Intermediate CA issues ECAQ credentials to the HIP
hosts. The Root CA has the authority to audit an Intermediate CA
and revoke certificates and public keys. A host trusts the public key
of a CA (a Root CA or an Intermediate CA).

In Figure 10, we present the details of the process preformed
by a Host to compute its host identities, such as an ECC key
pair (du,Qu) and host identity tag (HITu). A client (an Initiator
or a Responder) sends an ECC point Ru to the CA. The Ru is
encrypted (EQca(Ru)) using the public key of the CA (QCA). The
client uses the Elliptic Curve integrated encryption scheme [44]
to encrypt Ru. The CA receives EQca(Ru) and decrypts it using its
private key dca, and issues a public key construction data s and a
unique identifier construction data δ to the client. The CA encrypts
s and δ using a shared key α = Ru ∗ dca = ru ∗ dca ∗G before
sending them to the client. On receipt of the encrypted parameters
Eα(s,δ), the client computes the shared key α , decrypts Eα(s,δ),
and verifies MACα(s,δ). Next, the client computes a private key
du = ru + s (mod n) and public key Qu = du ∗G. The client also
computes a public key validation data Pu = Ru + δ and a hash of
Qu as its Host identity tag HITu = Hash(Qu).

To compute s, we propose an approach (Figure 10) which is
different from the conventional ECQV implicit certificate scheme
(Figure 3). From Figure 10, it can be noted that the CA does not
issue a certificate (ICert) to the client; therefore, we do not multiply
e, which is computed as e = Hash(ICert), with k, to compute s
(see the differences between Step-7 of Figure 10 and Step-8 of
Figure 3). We compute s as s = k+dCA (mod n). Hence, we skip
Step 6 and 7 of Figure 3. It can be also observed that, unlike
Step-11 of Figure 3, we do not multiply e with ru to compute du
(Step-8 of Figure 10). Moreover, in our proposed scheme, the s and
δ are encrypted and then sent to the client. These parameters are
stored in the client’s memory and used to compute unique identities
for different networks.

There are two reasons for which we do not use e to compute s
and du. First, a verifier does not have to compute a hash and perform

1. https://www.verisign.com/
2. https://www.digicert.com/
3. https://www.godaddy.com/

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

8

a multiplication operation while it validates a public key (see
Section 5.2). Thus, we reduce computation overheads for public
key validation. Second, an Initiator or a Responder can compute
unique public keys and host identity tags for every network it joins
without communicating with the CA to receive a new ECQV-based
credential s and δ (see Section 5.4). Hence, mobile IoT devices
can use unique host identities when they move from one network
to another network and avoid identity tracking.

Requester (U) Certificate Authority (CA)

1. ru ϵR [1,…, n-1]

2. Ru = ru*G
3. EQ-CA (Ru)

4. Dd-CA(EQ-CA (Ru))

5. k ϵR [1,…, n-1]

6. δu = k*G

7. s = k + dCA (mod n)

8. α = dCA*Ru = dCA*ru*G
9. Eα[s, δ], MACα[s || δ]

10. α = dCA*QCA = ru*dCA*G

11. Dα(Eα[s, δ]); Verify MACα[s || δ]

12. du = ru + s (mod n)

13. Qu = du*G

14. Pu = Ru + δ

15. HITu = Hash (Qu)

16. Store s, δ; Destroy ru, Ru

δu = Unique ID construction data

s = private key construction data

Pu = Public key validation data

α = shared key

E = Encryption; D = Decryption

Fig. 10: Proposed ECQV implicit certificate scheme

5.2 Host Identity Validation

This section presents the procedure to validate host identifiers,
such as public keys and host identity tags. Unlike the conventional
ECQV public key validation scheme as shown in Figure 4, an HIP
host does not perform hash and multiplication operations (see the
differences between Step-3 of Figure 11 and Step-3 and Step-4
of Figure 4) to verify the authenticity of a public key and host
identity tag. Our approach to validate host identities is shown in
Figure 11. A prover device provides its ECQV public key (Qp)
and the public key validation parameter (Pp) to a verifier device.
The verifier computes a public key Q′P as Q′P = Pp + QCA. If Q′P
matches Qp then the verifier ensures that the public key is not
forged and issued by the CA.

Prover Verifier

2. QP, PP

3. QP = PP + QCA

4. QP == QP ? Accept : Reject

1. Retrieve QP, PP

Fig. 11: Proposed approach to validate host identities.

Correctness of Host Identity Validation: A prover computes it
ECC key pair (dp,Qp) as Qp = dp ∗G (Step 13 of Figure 10).
For completeness, we prove that the operation Pp +QCA results in
dp ∗G, although we eliminate Step 6 and Step 7 of Figure 3, and
the multiplication operation of Step 8 of Figure 3. The correctness
of the proposed algorithm to validate an ECQV public key is as
follows:

Qp = Pp +QCA (1)

= Rp +δ +QCA (from Step 14 of Figure 10)

= Rp + k ∗G+dCA ∗G (from Step 6 of Figure 10)

= rP ∗G+(k+dCA)∗G (2)

= (rp + s)∗G (from Step 7 of Figure 10)

= dp ∗G (3)

5.3 Mutual Authentication

We present the proposed mutual authentication scheme in Figure 12.
The CA issues (si,δi) and (sr,δr) to the Initiator and Responder
respectively. The initiator computes its ECC pair (di,Qi) as di = ri+
si (mod n) and Qi = di ∗G, and identity validation parameter Pi =
ri ∗G+δi. Similarly, the Responder computes its ECC pair (dr,Qr)
as dr = rr + sr (mod n) and Qr = dr ∗G, and identity validation
parameter Pr = rr ∗G+δr. The details of the authentication scheme
are presented below.

5.3.1 Authentication Steps

Step 1: The Initiator sends its HITi and the Responder’s HITr in
an I1 message.

Step 2: The Responder computes its ECDH key pair
(decdh r,Qecdh r). In the conventional ECDH scheme as describes
in Section 3.4, a Responder selects its ECDH private key decdh r
randomly as decdh r ∈R [1, ...,n−1] and then the computes ECDH
public key Qecdh r = decdh r ∗G. Next, the Responder signs Qecdh r
and a puzzle using its private key dr. The Responder uses the
ECDSA signature algorithm to sign Qecdh r. However, in our
proposed scheme, we unburden HIP peers from the ECDSA
signature computation and validation operations. The Responder
computes an ECDH key pair (decdh r,Qecdh r) using the ECQV
public key computation scheme as shown in Algorithm 1. The
Responder provides its private key dr, HITr and a puzzle as inputs
to Algorithm 1. The Algorithm 1 computes decdh r,Qecdh r, and
Pecdh r. The Pecdh r is used by the Initiator to verify that Qecdh r
is issued by the Responder. Algorithm 2 presents the verification
process.

Algorithm 1: ECDH Key Pair Computation
function Compute ECDH KeyPair (HITir, dir, PuzSol)
Input :HITir −→ Initiator/responder Host Identity Tag
Input :dir −→ Private key of initiator or responder
Input :PuzSol −→ Puzzle or Solution
Output : (decdh ir,Qecdh ir) −→ ECDH key pair
Output : Pecdh ir −→ Parameter for Qecdh ir validation
if HITir equals NULL or PuzSol equals NULL then

return NULL
else

recdh ir = RandBetween [1, n-1]
Pecdh ir = recdh ir ∗G
eecdh ir = Hash (HITir || PuzSol || Pecdh ir)

decdh ir = eecdh ir ∗ recdh ir +dir (mod n)
Qecdh ir = decdh ir ∗G

(4)

return {(decdh ir,Qecdh ir), Pecdh ir}
end

Step 3: The Responder sends an R1 message to the Initiator.
The message contains HITi, HITr, a puzzle, and the Responser’s
ECC public key Qr and ECDH public key Qecdh r. The message

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

9

Algorithm 2: ECDH Public Key Validation
function Validate ECDH PublicKey (HITir, PuzSol, Qir, Qecdh ir,

Pecdh ir)
Input :HITir −→ Host Identity Tag of initiator or responder
Input :PuzSol −→ Puzzle or Solution
Input : Qir −→ Public key of initiator or responder
Input : Pecdh ir −→ Parameter for Qecdh ir validation
if HIT equals NULL or PuzSol equals NULL then

return NULL
else

eecdh ir ←− Hash (HITir || PuzSol || Pecdh ir)
Q′ecdh ir ←− eecdh ir* Pecdh ir + Qir
if Q′ecdh ir equals Qecdh ir then

return Authentic
else

return Forged
end

end

also includes a public key reconstruction data Pr and Pecdh r to
validate Qr and Qecdh r respectively.

Step 4: The Initiator validates the Responder’s public key Qr
and host identity tag HITr, and ensures that the identities are issued
by the CA.

Step 5: In this step, the initiator authenticates the Responder.
The Initiator provides the puzzle, HITr, Qr, Qecdh r, and Pecdh r
as inputs to Algorithm 2 to validate that the Qecdh r is computed
using the Responder’s private key dr. Thus, the Initiator confirms
that the Responder possesses the private key dr of the ECC pair
(dr,Qr). Section 5.3.2 presents the correctness of the ECDH public
key validation method.

Step 6: The Initiator solves the puzzle. Next, the Initiator
computes its ECDH key pair (decdh i,Qecdh i) and the public
validation parameter Pecdh i using Algorithm 2. The Initiator
provides its private key di, host identity tag HITi, and the solution
of the puzzle as the inputs to Algorithm 2 to compute decdh i,
Qecdh i, and Pecdh i.

Step 7: The Initiator computes an ECDH session key as Kir =
decdh i ∗Qecdh r = decdh i ∗decdh r ∗G. Next, the Initiator selects a
nonce Ni ∈R [1, ...,n−1] and computes a message authentication
code (MAC) of Ni using the Kir as MACKir (Ni).

Step 8: The Initiator sends an I2 message to the Responder.
The I2 message includes HITi, HITr, the solution of the puzzle, the
Initiator’s ECC public key Qi and ECDH public key Qecdh i, the
parameters Pi and Pecdh i to validate Qi and Qecdh i respectively,
the nonce Ni, and the MACKir (Ni).

Step 9–10: The Responder, first, verifies the authenticity of Qi
and HITi. Next, it validates the Qecdh i. The Responder provides
the solution, HITi, Qi, Qecdh i, and Pecdh i as inputs to Algorithm 2
to verify that the Qecdh i is computed using the initiator’s private
key di. Thus, the Responder authenticates the initiator.

Step 11: The Responder computes the ECDH session key as
Kir = decdh r ∗Qecdh i = decdh r ∗decdh i ∗G. The Responder selects
a nonce Nr ∈R [1, ...,n−1] and computes MACKir (Ni||Nr).

Step 12–13: The Responder replies with an R2 message that
contains HITi, HITr, Nb, and MACKir (Ni||Nr). The initiator verifies
the correctness of MACKir (Ni||Nr) using Kir, and confirms that both
parties computed the session key correctly.

5.3.2 Correctness of ECDH Public Key Validation
Here, we present the completeness of Algorithm 2. We show that
decdh ir ∗G can be derived from the operation eecdh ir ∗Pecdh ir +
Qir (Algorithm 2). Hence, we prove that Qecdh ir corresponds to

decdh ir and is computed using the private key (dir) of the Initiator
or Responder.

Qecdh ir = decdh ir ∗G

= (eecdh ir ∗ recdh ir +dir)∗G (from Equation 4)

= eecdh ir ∗ (recdh ir ∗G)+dir ∗G

= eecdh ir ∗Pecdh ir ∗+dir ∗G

= eecdh ir ∗Pecdh ir ∗+Qir

5.4 Unique Host Identity Computation
Let’s suppose the Initiator moves from network n to network
n+ 1. While the Initiator operates on network n, the Initiator’s
ECC pair (dn

i ,Q
n
i) and host identifiers are Qn

i and HIT n
i . When

the Initiator moves to the network n+ 1, We propose a scheme
that enables the Initiator to compute a new ECC pair (dn+1

i ,Qn+1
i)

and host identity tag (HIT n+1
i) without communicating to the CA.

The Initiator computes the new host identities when it moves to a
different network or wants to update its host identities. The Initiator
computes the new private key dn+1

i and public key Qn+1
i using its

ECQV credentials si and δi as follows:

rn+1
i = RandomBetween(1, n−1) (5)

Rn+1
i = rn+1

i ∗G (6)

The new ECC pair (dn+1
i ,Qn+1

i) is computed as below:

dn+1
i = rn+1

i + si (mod n) (7)

Qn+1
i = dn+1

i ∗G (8)

The new public key validation data Pn+1
i is computed as:

Pn+1
i = Rn+1

i +δi (9)

A responder validates the public key Qn+1
i as follows:

Q(n+1)′
i = Pn+1

i +QCA (10)

Q(n+1)′
i == Qn+1

i ? accept : re ject (11)

For completeness of Equation 10, we now prove that Qn+1
i is

the public key for the private key dn+1
i , which justifies that Qn+1

i
is issued by the CA and the Initiator can use Qn+1

i as a legitimate
public key:

Q(n+1)
i = Pn+1

i +QCA

= rn+1
i ∗G+δi +QCA (from Equation 9)

= rn+1
i ∗G+ k ∗G+QCA (from Step 14 Fig 10)

= rn+1
i ∗G+ k ∗G+dCA ∗G

= rn+1
i ∗G+(k+dCA)∗G

= rn+1
i ∗G+ si ∗G (from Step 7 Fig 10)

= (rn+1
i + si)∗G

= dn+1
i ∗G (from Equation 7)

6 SECURITY ANALYSIS OF P-HIP
In this section, we show that P-HIP is secure against various
network attacks. We first consider a set of security properties,
and then provide an analysis that shows P-HIP can ensure these
properties under various security threats. Table 2 presents the
summary of the security properties.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

10

Initiator (dI, QI) Responder (dR, QR)

Step 1. I1: [HITI, HITR]

Step 4. Validate QR & HITR

QR = PR + QCA

QR == QR ? Authentic : Forged

HIT
R = Hash (QR)

HIT
R == HITR ? Authentic : Forged

Step 9. Validate QI & HITI

QI = PI + QCA

QI == QI ? Authentic : Forged

HIT
I = Hash (QI)

HIT
I == HITI ?Authentic : Forged

Step 2. Compute ECDH Key

Compute_ECDH_KeyPair (HITR, Puzzle, dR)

ECDH pair (decdh_r,Qecdh_r)

Validation data Pecdh_r

Step 3. R1: [HITI, HITR, QR,

PR, Puzzle, Qecdh_r, Pecdh_r]

Step 8. I2: [HITI, HITR, QI, PI Solution,

Qecdh_i, Pecdh_i, Ni, MACKIR(Ni)]

Step 6. Compute ECDH Key

Compute_ECDH_KeyPair (HITI, Solution, dI)

ECDH pair (decdh_i,Qecdh_i)

Authenticator Pecdh_i

Step 5. Validate Puzzle & Qecdh_r

Validate_ECDH_PublicKey (HITR, Puzzle, QR, Qecdh_r, Pecdh_r)

Step 7. Compute Session Key

KIR = dechd_i*Qecdh_r = decdh_i*decdh_r*G

Step 10. Validate Solution & Qecdh_i

Validate_ECDH_PublicKey (HITI, Solution, QI, Qecdh_i, Pecdh_i)

Step 11. Compute Session Key

KIR = dechd_r*Qecdh_i = decdh_r*decdh_i*G

Verify MACKIR(Ni)

Step 12. R2: [HITI, HITR, Nr, MACKIR(Ni || Nr)]

Step 13. Verify MACKIR(Ni || Nr)

Fig. 12: Proposed ECQV authentication for HIP

6.1 Trustworthy ECDH Public Value

The HIP hosts trust the CA. The CA issues private key computation
data (s) to a host. The host computes an ECC key pair using s.
Next, the host proves to a verifier that it possesses the private key
of the key pair that is computed using s. Hence, the verifier trusts
the host. The verifier also accepts any ECC key pair as authentic

that is computed using the private key of the host. For instance,
the ECDH private value decdh r of a Responder is computed using
the Responder’s private key dr (Algorithm 1). An Initiator first
verifies the authenticity of the Responder’s public key Qr (Step 4
of Figure 12). Next, it validates the Responder’s ECDH pubic value
Qecdh r (Step 5 of Figure 12). Thus, the Initiator avoids signature

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

11

TABLE 2: Security Properties.

Security Property Attack Scenario Requirements

Trustworthy host identifiers An adversary uses forged identities for authentication. HIP hosts should be able to identify forged
identities.

Identity privacy
An adversary is provided host identifiers, which are used by
a target host in various networks or locations, for movement
profiling, communication relation, location recording, and so on.

The adversary cannot determine whether the host
identifiers belong to the same host.

Credential freshness
An adversary stores messages (I1, I2, R1, and R2) exchanged
between HIP hosts and then retransmit the messages to trick a
target host into false identification or authentication.

The target host should be able to identify re-
played messages.

Identity impersonation mitigation

An adversary can alter the credentials of I1, R1, I2 and R2
messages exchanged between two parties to impersonate a
legitimate peer. Thus, the adversary tricks the peers into believing
that they are directly communicating with each other.

HIP peers should be able to identify such creden-
tial fabrication.

Communication protection An adversary can eavesdrop on the communication channel to
learn the contents of exchanged messages.

Communicating peers should preserve the pri-
vacy and confidentiality of the communications.

Forward Security An adversary can use compromised credentials, such as session
keys, to learn past or future communications.

The adversary cannot use the leaked credentials
to compute session keys used in the past or will
be used in the future communications.

validation operations required to authenticate the Responder, and
ensures that Qecdh r corresponds to decdh r which is computed
using dr. Note that the Responder computes dr using the private
key computation data sr issued by the CA (Step 12 of Figure 10).

6.2 Identity Privacy

Let’s suppose, an adversary is provided with identities (P1,Q1),
(P2,Q3),..., (Pn−1,Qn−1), (Pn,Qn) of an HIP host that were used in
n number of networks. The identities were computed as follows
(see Section 5.4):

P1 = R1 +δ Q1 = R1 +µ

P2 = R2 +δ Q2 = R2 +µ

...
...

Pn−1 = Rn−1 +δ Qn−1 = Rn−1 +µ

Pn = Rn +δ Qn = Rn +µ

The goal of the adversary is to infer that the identifiers belong
the same host. To find a mapping between two public keys Qi and
Q j the adversary must know either Ri or R j, and δ and µ , such
that 1≤ i, j ≤ n ∧ i 6= j, R j = r j ∗G, δ = k ∗G, and µ = s∗G. If
the adversary learns Ri then it finds δ and µ as follows:

δ = Pi−Ri

µ = Qi−Ri

The adversary uses δ and µ to compute R j and Q j as follows.

R j = Pj−δ

Q j = R j +µ

Hence, the adversary ensures that host identities Q1, Q3, ...,
Qn−1, Qn belong to the same HIP host. However, an adversary
cannot learn the keys R1,R2, ..,Rn−1 because the key R1 is
encrypted using the public key of the CA (Step 3 of Figure 10)
and the R2,..,Rn−1 are destroyed right after the computation of dk
(Equation 7) and Pk (Equation 9) such that 2≤ k ≤ n. Therefore,
we can conclude that the adversary cannot learn that the identities
(P1,Q1), (P2,Q3),..., (Pn−1,Qn−1), (Pn,Qn) correspond to the same
host.

6.3 Credential Freshness
6.3.1 Replay Initiator’s Credentials
An adversary replays an Initiator’s host identities, such as Qi
and HIPi, that are included in an I1 message. The Responder
replies with a R2 message. The adversary replays an I2 message
in response. However, the Responder terminates the connection
as it finds a replayed Nonce Ni (e.g., a timestamps) included in
the I2 message (Step 9 of Figure 12). The adversary can use a
recent Nonce Nn

i to fool the Responder. However, the adversary
cannot compute a MAC for Nn

i as MACKir (N
n
i) since it does not

possess the session key Kir. As such, the MACKir (N
n
i) validation

will fail on the Responder end, and the Responder will terminate
the communications.

6.3.2 Replay Responser’s Credentials
An adversary replays a R1 message to an Initiator. The Initiator
replies with an I2 message that contains a new Nonce Nn

i
and MACKir (N

n
i). The initiator waits for a R2 message which

includes a MAC computed as MACKir (N
n
i ||Nn

r) such that Nn
r is a

nonce generated by the Responder for the current session (Step
12–13 of Figure 12). However, the adversary cannot compute
MACKir (N

n
i ||Nn

r) as it does not possess the private key of the real
Responder. As such, the adversary replays a R2 message. The
Initiator terminates the communication as it finds a replayed nonce
Nr included in the R2 message.

6.4 Identity Impersonation Mitigation
The Man-in-the-Middle (MITM) attack is a type of identity
impersonation. In the MITM, the goal of an adversary is to establish
a session key with an initiator or responder impersonating a real
HIP host. The adversary replaces the credentials of the target host
with its forged credentials, and tricks the target host into thinking
that the adversary is the legitimate host.

6.4.1 Fabrication of Responder’s Keying Materials
An adversary with an ECC key pair (dadversary,Qadversary) blocks
the R1 message (Step 3 of Figure 12). Next, it computes an ECDH
key pair (dadversary

ecdh ,Qadversary
ecdh) by providing dadversary, puzzle, and

HITr as inputs to Algorithm 1. The adversary replaces Qecdh r, and
Pecdh r with its own Qadversary

ecdh and Padversary
ecdh respectively. To this

end, the adversary constructs a malicious R2 message with the
forged keying materials, and sends it to the Initiator. However, the

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

12

Initiator provides HITr, Qr, Qadversary
ecdh , and Padversary

ecdh as the inputs
to Algorithm 2 (Step 5 of Figure 12), and finds that Qadversary

ecdh is
forged. Thus, the Initiator ensures that Qadversary

ecdh was not computed
using the private key dr of the Responder. The adversary can
also replace the Responder’s keying materials Qr and Pr with its
keying materials Qadversary and Padversary respectively. However,
the Initiator identifies this forgery when it validates the HITr of
the Responder as HITr == Hash(Qadversary) ? authentic : f orged
(Step 4 of Figure 12). Note that the adversary can forge the host
HITr of the Responder. However, the HIP layer of the Initiator
discards this packet immediately as it finds the forged HIT adversary

r
which was not sent in the I1 message (Section 4.4 of RFC [15]).

6.4.2 Fabricating of Initiator’s Keying Materials
The adversary replaces the Initiator’s ECDH credentials Qecdh i
and Pecdh i, that are included in the I2 message, with its forged
cryptographic keys Qadversary

ecdh and Padversary
ecdh respectively. The

Responder identifies this forgery as the ECDH key validation
fails in Step 10 of Figure 12. The Responder computes Q′ecdh r
using Padversary

ecdh and the public key of the Initiator Qi. However,
the Responder finds that Q′ecdh r does not match the forged key
Qadversary

ecdh . Hence, the Responder ensures that Qadversary
ecdh was not

computed using the Initiator’s private key di. If the adversary forges
Qi and Pi then the Responder identifies this forgery in Step 9 of
Figure 12.

6.5 End-to-End Communication Protection
Communicating HIP peers perform the ECDH key exchange to
establish a session key (Step 7 and Step 11 of Figure 12). The peers
encrypt messages using the session key. Therefore, adversaries
cannot learn the communications that take place between the peers.

6.6 Forward Security
The cryptographic materials that are used to compute a shared key
is generated randomly for every session. An Initiator selects an
ECDH key pair (decdh i,Qecdhi) such that it is different from one
session to another session (Step 6 of Figure 12). A Responder also
computes its ECDH key pair (decdh r,Qecdh r) randomly (see Step
2 of Figure 12 and Algorithm 1). As such, if the shared key of
one session is leaked then the communications of that session is
revealed only. An adversary cannot use the leaked session key to
learn or derive the shared keys of other sessions because these keys
are generated using session independent and random ECDH key
pairs.

7 EXPERIMENT

7.1 Experimental Setup
We implemented a prototype of P-HIP for RE-Mote [45] IoT
devices powered by the Contiki [46] operating system. Figure 13
shows the experimental setup. The hardware specification of a
RE-Mote is presented in Table 3. We created an IoT network
using two RE-Mote devices and a Weptech [33] border router.
The Weptech gateway served as a bridge between an IPv4 and
IPv6 network. The RE-Motes operated on the IPv6 network.
The Weptech gateway was equipped with two network interface
cards: Ethernet and IEEE 802.15.4 radio transceiver. The radio
interface enabled communications between the RE-Mote devices,
while the Ethernet interface connected the IoT network to the

TABLE 3: RE-Mote [45] device specification.

Component Description
CPU ARM Cortex-M3
Speed 32 MHz
RAM 32 KB
Flash 512 KB
Transceiver IEEE 802.15.4
Radio Bandwidth 250 kbps

Internet. We developed a UDP server and hosted it on a RE-
Mote device. The server RE-Mote exposed its resources as CoAP
(Constrained Application Layer Protocol) [47] URLs, such as
coap://aaaa::212:4701:101/responder/res. The other RE-Mote acted
as a CoAP client and interacted with the server device using the
CoAP URL. We implemented the HIP authentication methods in
Contiki. We designated the server node as a Responder and the
client node as an Initiator.

In our experimental scenarios, we considered both the Mesh-
under and Route-over routing as the packet forwarding mechanism.
We used the Relic [48] library to perform cryptographic operations.
In the experiment, the RE-Mote devices exchanged X.509 self-
signed certificates as the proof of their hots identifiers. We created
an RSA and ECC self-signed X.509 certificates using the OpenSSL
library [38]. The lengths of the RSA and ECC keys were 1024 bits
and 160 bits respectively.

Contiki

UDP

CoAP Client

Relic

ECDHP-HIP

ECQV

HIP

ECC

DHRSA
HIP-DEX

HIP-BEX

HIP Message [I1, I2, R1, R2]

MAC

Contiki

UDP

CoAP Server

HIP

Weptech

Internet

IPv6

IPv4

Initiator (RE-Mote) Responder (RE-Mote)

HIP Stack

IPv6

Fig. 13: Experimental Setup.

7.2 Evaluation

We analyzed the performance of P-HIP regarding communication,
computation, and energy costs for mutual authentication and session
key establishment. We compared the resource efficiency of P-HIP
with the RSA based authentication used in HIP-BEX [15] and ECC-
based authentication used in HIP-DEX [18]. The collaborative
authentication methods proposed in D-HIP [16] and HIP-TEX [17]
were not considered in our experimental scenarios because these
schemes are not feasible for IoT networks that do not have resource-
rich proxy nodes. Moreover, these schemes follow the HIP-BEX
model in the IoT networks without proxy nodes. The LHIP [20] was
not considered as it does not have supports for authentication and
key exchange. The Slimfit [19] does not address the communication
overhead for sending HIP credentials and computation overheads
for the cryptographic operations. Instead, the Slimfit relies on the
methods used in the HIP-BEX (HIP-RSA) and HIP-DEX (HIP-
ECC) for the authentication. Therefore, we discarded the Slimfit
from our experimental scenario. Table 4 provides the details of

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

13

the HIP message (conents and sizes) used for the experimental
evaluation. Two communicating peers perform the HIP handshake
(I1→ R1→ I2→ R2) every time they exchange messages. The
details of the evaluation of P-HIP are as follows.

Fragment Savings: We provided a comparison of the num-
ber of packet fragment both for the mesh-under and route-
over routing in Figure 14. We calculated the total number of
fragments (Fn) that are exchanged during the authentication as

Fn =
∑

2
i=1 sizeof(Ii)+∑

2
j=1 sizeof(R j)

s . In this equation, the term s denotes
the number of bytes available for an HIP payload in the IEEE
802.15.4 frame (Figure 2) – s is 46 bytes in route-over routing
(Figure 2b) and 29 bytes in mesh-under routing (Figure 2c). From
the Figures 14a and 14b, it can be observed that the Fn for the R1
and I2 message are significantly lower in P-HIP than in the HIP-
BEX and HIP-DEX. P-HIP used ECQV based credentials (Q,P)
as the proof of authenticity of public keys and host identity tags
instead of X.509 certificates. The sizes of the ECQV credentials are
much smaller than the certificates. Therefore, the total number of
fragment was dropped significantly in P-HIP. The Fn for the I1 and
R2 message are same because these messages contain information
about the fixed sized host identifies (128 bits), nonces (16 bits),
and MACs (128 bits).

In Figure 15, we presented the average fragment saving (Fs)
in P-HIP. The Fs was calculated as Fs = 1− FP−HIP

n
Fa

n
, such that

Fa
n = FHIP−BEX(rsa−based)

n +FHIP−DEX(ecc−based)
n

2 . From Figure 15, it can
be observed that P-HIP could reduce the number of fragment for
the R1 and I2 message by 91% and 89% respectively.

2

67 68

32

37 38

32
5 6

3

0

10

20

30

40

50

60

70

80

I1 R1 I2 R2

N
u

m
b

er
 o

f
F

ra
g

m
en

ts

HIP Message Type

RSA-based HIP

ECC-based HIP

PHIP

(a) Number of HIP packet fragments in Mesh-under routing.

1

42 43

21

24 24

21
3 4

2

0

5

10

15

20

25

30

35

40

45

50

I1 R1 I2 R2

N
u

m
b

er
 o

f
F

ra
g

m
en

ts

HIP Message Type

RSA-based HIP

ECC-based HIP

PHIP

(b) Number of HIP packet fragments in Route-over routing.

Fig. 14: A comparison of HIP packet fragments.

Communication Latency: In Figure 16, we provided an analysis

91 89

0

10

20

30

40

50

60

70

80

90

100

I1 R1 I2 R2

F
r
a

g
m

e
n

t
S

a
v

in
g

s
(%

)

HIP Message Type

Fig. 15: Percentage of fragment savings in P-HIP.

of message delivery delay. We recorded the time required to
deliver HIP messages using the mesh-under and route-over routing
separately, and showed the results in Figure 16a and 16b. We used
the Contiki clock library [49] to measure the delays. From the
figures, it can be observed that there was a notable reduction in
the message delivery time in P-HIP. P-HIP minimized the delivery
time of the R1 and I2 message by avoiding the exchange of X.509
certificates.

116

3886 3944

192121

2254 2204

178

133

340 418
185

0

500

1000

1500

2000

2500

3000

3500

4000

4500

I1 R1 I2 R2

D
el

iv
er

y
 T

im
e

(m
s)

HIP Message Type

RSA-based HIP

ECC-based HIP

PHIP

(a) Communication latency in Mesh-under routing.

78

2613 2652

129
81

1516 1482

120

89

229 281
125

0

500

1000

1500

2000

2500

3000

I1 R1 I2 R2

D
el

iv
er

y
 T

im
e

(m
s)

HIP Message Type

RSA-based HIP

ECC-based HIP

PHIP

(b) Communication latency in Route-over routing.

Fig. 16: A comparison of communication overheads.

Runtime: We provided an analysis of the runtime for crypto-
graphic operations and fragment processing (message fragmen-
tation and reassembly) in Figure 17. We recorded the runtime
on the Initiator node. As shown in Figure 17a, P-HIP spent a
significantly lower amount of time on fragment processing than
HIP-BEX and HIP-DEX due to the exchange of small-sized R1

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

14

TABLE 4: The content and size of various types of message used in the HIP handshake. s = sender, r = receiver.

Message Content Size (Bits) Total Size (Bytes)
HIP (RSA) HIP (ECC) P-HIP HIP-RSA HIP-ECC P-HIP HIP-RSA HIP-ECC P-HIP

I1 HITs, HITr HITs, HITr HITs, HITr 128 +
128

128 +
128

128 +
128

32 32 32

R1 HITs, HITr ,
Public Key,
Puzzle, DH
Key Exchange
Param (discrete
logarithm group),
Signature (RSA),
X.509 Certificate

HITs, HITr ,
Public Key,
Puzzle, ECDH
Key Exchange
Param, Signature
(ECDSA), X.509
Certificate

HITs, HITr ,
ECQV Cred
(P, Q), Puzzle,
ECDH Key
Exchange Param
(Pecdh, Qecdh)

128 +
128 +
1024
+ 64 +
3072 +
1024 +
9896

128 +
128 +
160 + 64
+ 160 +
320 +
7584

128 +
128 +
(160
+ 160)
+ 64 +
(160 +
160)

1917 1068 120

I2 HITs, HITr ,
Public Key,
Solution, DH
Key Exchange
Param (discrete
logarithm group),
Signature (RSA),
X.509 Certificate,
Nonce, MAC

HITs, HITr ,
Public Key,
Solution, ECDH
Key Exchange
Param, Signature
(ECDSA), X.509
Certificate,
Nonce, MAC

HITs, HITr ,
ECQV Cred (P,
Q), Solution,
ECDH Key
Exchange Param
(Pecdh ,Qecdh),
Nonce, MAC

128 +
128 +
1024
+ 64 +
3072 +
1024 +
9896 +
16 + 256

128 +
128 +
160 + 64
+ 160 +
320 +
7584 +
16 + 256

128 +
128 +
(160
+ 160)
+ 64 +
(160 +
160) +
16 + 256

1951 1102 154

R2 HITs, HITr ,
Nonce, MAC

HITs, HITr ,
Nonce, MAC

HITs, HITr ,
Nonce, MAC

128 +
128 + 16
+ 256

128 +
128 + 16
+ 256

128 +
128 + 16
+ 256

66 66 66

and I2 messages. Moreover, there is a notable reduction in the time
required to validate a host’s identities (R1 message) and compute a
session key (I2 message). The runtime for cryptographic operations
was reduced because, unlike the HIP-BEX and HIP-DEX, P-HIP
does not require HIP peers to perform modular exponentiation
operations and signature verification to validate host identities and
compute a session key.

Figure 17b presents a comparison of total runtime for the
authentication methods. The total runtime (rt) was calculated as rt
= ri + rc + rr. The terms ri and rr represent the time to fragment I
message and reassemble R messages respectively. The term rc is
the sum of the time required to validate host identities and establish
a session key. As shown in Figure 17, P-HIP is 12 and 64 times
faster than the HIP-BEX and HIP-DEX respectively.

Energy Cost: We used the Contiki energy library [50] to measure
the energy consumption of the CPU and radio transceiver. Figure 18
presents a comparison of the energy consumption of the radio
transceiver for exchanging HIP messages. From the figure, it can
be noted that, on average, P-HIP could reduce energy costs for
communications by 85% and 82% in the mesh-under and route-over
routing respectively.

The results of the energy consumption by a CPU for performing
cryptographic operations are shown in Figure 19. From the figure,
it can be noted that P-HIP is more energy efficient compared to the
the HIP-BEX and HIP-DEX. On average, P-HIP could reduce the
energy cost by 81%.

8 CONCLUSION

In this article, we proposed P-HIP, a lightweight and privacy-
preserving authentication method for the HIP-enabled IoT devices.
P-HIP utilized the ECQV cryptography to reduce computation
overheads for mutual authentication to make the HIP suitable
for the resource-constrained IoT device with limited processing
power. P-HIP eliminated the computation-intensive cryptographic
operations, such as modular exponentiation, signature validation,
and asymmetric encryption and decryption, involved in the authen-
tication. P-HIP also eliminated the requirements for exchanging
certificates, which are sent in a large number of fragments over a

1

10

100

1000

10000

100000

1

10

100

R
S

A

E
C

C

P
H

IP

R
S

A

E
C

C

P
H

IP

R
S

A

E
C

C

P
H

IP

R
S

A

E
C

C

P
H

IP

I1 R1 I2 R2

C
ry

p
to

 O
p

er
a

ti
o

n
 R

u
n

ti
m

e
(m

s)

F
ra

g
m

en
t

P
ro

ce
ss

in
g

 R
u

n
ti

m
e

(m
s)

HIP Message

Fragmentation Fragment Reassembly Cryptographic Operation

(a) Runtime analysis of HIP flights.

142 82

14

3458
19271

289

1

10

100

1000

10000

100000

RSA-based HIP ECC-based HIP PHIP

R
u

n
ti

m
e

(m
s)

Authentication Schemes

Cryptographic Operation Fragment Processing

(b) Total runtime on an Initiator node.

Fig. 17: Runtime analysis.

lossy link, as the poof of the authenticity of host identities, such
as public keys and host identity tags. Hence, P-HIP unburdened
IoT devices, which operate on the low data rate networks, from the
communication overheads for certificate delivery and processing
certificate fragments. P-HIP also provided a scheme to compute
unique host identifiers without contacting a certificate authority.
Thus, P-HIP enabled a mobile HIP host to compute legitimate

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

15

1400

800

160

1144

663

130

89

80

89

76

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

RSA-basedECC-based PHIP RSA-basedECC-based PHIP

Mesh-under Route-over

E
n

er
g

y
 S

a
v

in
g

 (
%

)

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
m

j)

Authentication MethodEnergy Saving (%)

Fig. 18: Energy cost for communications

28.83

450.87

0.61
51.27 63.63

0.56
2.36

34.48
0.64

0

50

100

150

200

250

300

350

400

450

500

R1 I2 R2

E
n

er
g

y
 (

m
j)

HIP Message Type

RSA-based

ECC-based

PHIP

(a) Energy cost for cryptographic operations.

480.30

115.46

37.49

0 100 200 300 400 500

RSA-based

ECC-based

PHIP

Total Energy (mj)

Savings 68%

Savings 93%

(b) Total energy consumption cryptographic operations.

Fig. 19: Energy cost for computations.

identifiers that are unique from networks to networks and sessions
to sessions to protect its privacy. We presented a security analysis
of P-HIP that showed P-HIP could provide security against identity
tracking, replay, and man-in-the-middle attacks. We also provided
a performance analysis of P-HIP which confirmed that P-HIP
could minimize computation, communication, and energy costs for
authentication.

ACKNOWLEDGMENT

Hasan was supported by the National Science Foundation through
awards DGE-1723768, ACI-1642078, and CNS-1351038, and by
the National Institutes of Health grant 1R21HD095270-01.

REFERENCES

[1] R. Petrolo, V. Loscri, and N. Mitton, “Towards a smart city
based on cloud of things, a survey on the smart city vision and
paradigms,” Transactions on Emerging Telecommunications
Technologies, vol. 28, no. 1, 2017.

[2] C. Benevolo, R. P. Dameri, and B. D’Auria, “Smart mobility
in smart city,” in Empowering Organizations. Springer, 2016,
pp. 13–28.

[3] M. Hossain, S. R. Islam, F. Ali, K.-S. Kwak, and R. Hasan,
“An internet of things-based health prescription assistant and
its security system design,” Future generation computer
systems, vol. 82, pp. 422–439, 2018.

[4] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and
K.-S. Kwak, “The internet of things for health care: a
comprehensive survey,” IEEE Access, vol. 3, pp. 678–708,
2015.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling tech-
nologies, protocols, and applications,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[6] R. Srinivasan, A. Sharmili, S. Saravanan, and D. Jayaprakash,
“Smart vehicles with everything,” in 2nd International Con-
ference on Contemporary Computing and Informatics (IC3I).
IEEE, 2016, pp. 400–403.

[7] M. E. Berglund, J. Duvall, and L. E. Dunne, “A survey of the
historical scope and current trends of wearable technology
applications,” in Proceedings of the 2016 ACM International
Symposium on Wearable Computers. ACM, 2016, pp. 40–43.

[8] Gartner, “5.8 billion enterprise and automotive
iot endpoints will be in use in 2020,” Online at
https://www.gartner.com/en/newsroom/press-releases/
2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io,
2019.

[9] C. Perkins et al., “Ip mobility support for ipv4,” 2002.
[10] D. Johnson, C. Perkins, J. Arkko et al., “Mobility support in

ipv6,” 2004.
[11] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton,

D. K. Smetters, B. Zhang, G. Tsudik, D. Massey, C. Pa-
padopoulos et al., “Named data networking (ndn) project,”
Relatório Técnico NDN-0001, Xerox Palo Alto Research
Center-PARC, vol. 157, p. 158, 2010.

[12] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of ipv6 packets over ieee 802.15.4 networks,”
IETF RFC 4944, 2007.

[13] V. Pai, U. K. K. Shenoy et al., “6lowpan—performance
analysis on low power networks,” in International Conference
on Computer Networks and Communication Technologies.
Springer, 2019, pp. 145–156.

[14] V. Kumar and S. Tiwari, “Routing in ipv6 over low-power
wireless personal area networks (6lowpan): A survey,” Journal
of Computer Networks and Communications, vol. 2012, 2012.

[15] T. Heer, P. Jokela, and T. Henderson, “Host identity protocol,”
IETF RFC 7401, 2015.

[16] Y. B. Saied and A. Olivereau, “D-hip: A distributed key
exchange scheme for hip-based internet of things,” in IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2012, pp. 1–7.

[17] Y. Saied and A. Olivereau, “Hip tiny exchange (tex): A dis-
tributed key exchange scheme for hip-based internet of things,”
in Third International Conference on Communications and

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3009024, IEEE Internet of
Things Journal

16

Networking, 2012, pp. 1–8.
[18] R. Moskowitz and R. Hummen, “Hip diet exchange (dex),”

draft-ietf-hip-dex-06, 2017.
[19] R. Hummen, J. Hiller, M. Henze, and K. Wehrle, “Slimfit: A

hip dex compression layer for the ip-based internet of things,”
in 2013 IEEE 9th International Conference on Wireless
and Mobile Computing, Networking and Communications
(WiMob), 2013, pp. 259–266.

[20] T. Heer, “Lhip lightweight authentication extension for hip,”
draft-heer-hip-lhip-00, 2007.

[21] Zolertia, “Z1 mote iot device,” 2016. [Online]. Available:
http://zolertia.sourceforge.net/

[22] SkyMote, “T-Mote Sky Iot Device,” 2016. [Online].
Available: http://wirelesssensornetworks.weebly.com/1/post/
2013/08/tmote-sky.html

[23] APDM, “Opal sensor node,” https://www.apdm.com/
wearable-sensors/, 2016. [Online]. Available: http://www.net.
in.tun.de/en/sandbox/wireless-sensor-networks/

[24] O. Mote, “Open hardware for the internet of things,” http:
//openmote.com/product/openmote-b-platinum-kit/, 2016.

[25] Libelium, “Waspmote: The sensor device for internet of things
developers,” http://www.libelium.com/products/waspmote/,
2016.

[26] T. Heer and S. Varjonen, “Host identity protocol certificates,”
IETF RFC 8002, 2016.

[27] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller
area network (can) schedulability analysis: Refuted, revisited
and revised,” Real-Time Systems, vol. 35, no. 3, pp. 239–272,
2007.

[28] Weinzierl, “Kns stacks: A development board for knx ap-
plications,” https://www.weinzierl.de/index.php/en/all-knx/
knx-stacks-en/development-hardware-en, 2017.

[29] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes au-
tomation using z-wave protocol,” in International Conference
on Engineering & MIS (ICEMIS). IEEE, 2016, pp. 1–6.

[30] D. Sturek, “Zigbee ip stack overview,” ZigBee Alliance, vol.
2009, 2009.

[31] Arduino, “Arduino Uno: An IoT development board,” https:
//store.arduino.cc/usa/arduino-uno-rev3, 2017.

[32] Arm-Mbed, “Mbed: A development board for rapid proto-
typing of iot applications,” https://os.mbed.com/platforms/
mbed-LPC1768/, 2017.

[33] Weptech, “A 6LoWPan Border Router,” https://www.weptech.
de/6LoWPAN IoT Gateway EN.html, 2017.

[34] Certicom, “Explaining implicit certificates,” Certicom, Tech.
Rep., 2014, online at https://www.certicom.com/content/
certicom/en/code-and-cipher/explaining-implicit-certificate.
html.

[39] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt,
“Secure communication for the internet of things—a compar-

[35] E. Rescorla, “Diffie-hellman key agreement method,” IETF
RFC 2631, 1999.

[36] R. Haakegaard and J. Lang, “The elliptic curve diffie-hellman
(ecdh),” Online at https://koclab.cs.ucsb.edu/teaching/ecc/
project/2015Projects/Haakegaard+Lang.pdf, 2015.

[37] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve
digital signature algorithm (ecdsa),” International journal of
information security, vol. 1, no. 1, pp. 36–63, 2001.

[38] J. Viega, M. Messier, and P. Chandra, Network Security
with OpenSSL: Cryptography for Secure Communications.
O’Reilly Media, Inc, 2002.
ison of link-layer security and ipsec for 6lowpan,” Security
and Communication Networks, vol. 7, no. 12, pp. 2654–2668,
2014.

[40] C. Lin, K. Liu, B. Xu, J. Deng, C. W. Yu, and G. Wu, “Vclt:
An accurate trajectory tracking attack based on crowdsourcing
in vanets,” in International Conference on Algorithms and
Architectures for Parallel Processing. Springer, 2015, pp.
297–310.

[41] J. Hua, Z. Shen, and S. Zhong, “We can track you if you
take the metro: Tracking metro riders using accelerometers on
smartphones,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 2, pp. 286–297, 2017.

[42] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis et al., “Understanding the mirai
botnet,” in USENIX Security Symposium, 2017.

[43] A. Di Maio, M. R. Palattella, R. Soua, L. Lamorte, X. Vi-
lajosana, J. Alonso-Zarate, and T. Engel, “Enabling sdn in
vanets: What is the impact on security?” Sensors, vol. 16,
no. 12, p. 2077, 2016.

[44] M. Campagna, “Sec 4: Elliptic curve qu-vanstone implicit
certificate scheme (ecqv),” vol, vol. 4, p. 32, 2013.

[45] ReMote, “A 6LoWPAN IoT device,” http://zolertia.io/z1,
2017.

[46] Contiki, “Contiki os: An open source operating system for
the internet of things,” Online at http://www.contiki-os.org/,
2016.

[47] Z. Shelby, K. Hartke, and C. Bormann, “The constrained
application protocol (CoAP),” RFC 7959, 2014.

[48] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient
LIbrary for Cryptography,” https://github.com/relic-toolkit/
relic.

[49] C. Library, “Contiki apis for accessing realtime clock,” 2017.
[Online]. Available: http://www.eistec.se/docs/contiki/a02184.
html

[50] Contik, “Contiki apis for measuring energy consump-
tion,” http://contiki.sourceforge.net/docs/2.6/a00452 source.
html, 2017.

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on November 07,2020 at 07:14:00 UTC from IEEE Xplore. Restrictions apply.

